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@ StumbleUpon — Choose Topics, Discover Content
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@ Bookmark, Organize and Share
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@ Recommendations — Matching User With Content
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@ Problems and Challenges

 Understand User
—  User Quality
— Latent Interests

* Understand Content
— Content Quality
— {Spam, Dupes} Detection
— Spotting Dead + Parked Pages
— Handling different content types

 Recommendations
— Rec Quality
— Managing item supply/demand + churn
— Keep learning

* Business Related
— Onerec at atime
— Don’t show already seen content
— Constantly changing product/use-cases



@ Architecture |
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@ Architecture |
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@ ltem Lifecycle in a Recommender System

1. Ingestion Entry point for items; Feature
extraction

2. Initial Recs

— Cold start Optimize for maximum expected
positive ratings and satisfy item demand

3. Head Recs
— Trending Popular in the short run
— Timeless Popular in the long run

4. Tail Recs

— Collaborative Filtering Nearest neighbors
Dased on user signals

— Serendipitous Recs Unexpected but relevant




@ Serendipitous Recs

« What?
— Recommend the “unexpected but useful”
— “Go beyond relevance” and look for “interestingness”

o Why?
— “Helps avoid tunnel vision”
— Allows exploration, enables true discovery

« Challenges

— Figuring out how to serve good content that is not random, is
unexpected but useful...Hmm

— Measuring/Controlling serendipity

Bordino 1. et al., Penguins in sweaters, or serendipitous entity search on user-generated content, CIKM 2013



@ Serendipitous Surfing
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@ Characterizing Content

« Some relevant features
— Topics
— Keywords
— Language
— Mime Type
— Content Type
— Number of Ads
— Number of Links
— Responsive Design
— Overlays/Popups and more...



@ Topic Models

 What
— Discover underlying topic structure
— Annotate documents
— Index/Search documents

* Applications
— Content Categorization
— Dimensionality Reduction
— User modeling

Blei, David M. "Probabilistic topic models." Communications of the ACM 55.4
(2012): 77-84.



@ Content Categorization

« Requirements
— (Categorize documents to a predefined topic taxonomy
— Cluster documents into broader groups

« Applications
— Search and recommendations
— Evaluate user’s categorization/re-categorization of documents
— Discovering related interests



@ Feature Extraction
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Milne, David, and lan H. Witten. "An open-source toolkit for mining Wikipedia."
Artificial Intelligence 194 (2013): 222-239.



@ Content Categorization: Discovering topics

* Naive Bayes Classifier
— Words are generated from one mixture

— Words are independently distributed given
topic
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@ Properties

« Supervised and generative (fully probabilistic)
 Efficient in both training and classification
« Easy to Implement an online version

» Dependent on a static vocabulary (retrain if vocabulary
changes)

* \ery restricted means of identifying semantic groups from
a mixture model



@ Content Categorization: Discovering Semantic Groups
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@ Properties

« Unsupervised (Classic LDA) and generative
» Well suited for domain adaptation (taxonomy shift)

 Allows making topic clusters as loose/tight as
needed
— a controls the peak-ness of the document-topic
distributions
— N controls the peak-ness of the topic-word
distributions

e Can be extended to discover relations,
hierarchies, etc.,



@ Evaluation + Relearning

» Periodically evaluate the model
* Perplexity

— Measure of how surprised the model is on an average when having to guess
between k equally probable choices.

— The average log probability of the trained model having seen the test samples
2Entr0py — 2—Eplogp

e Use human judgment from word intrusion and topic
intrusion tasks

« Good topic associations can be initialized from previous
trainings or from separate topic clustering



@ Topic Mixtures
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« Dimensionality Reduction
— Build LDA model using “Head” URLs
— Use the model to classify “Tail” URLs in Latent Topic Space

* Document Graph

— Compute pairwise similarity between documents with topic
overlaps Cosine Similarity, Weighted Jaccaro

— Build a graph where documents make up the nodes and the
similarity score make up the edge weights.
« Page Rank

— Run topic sensitive page rank over the document graph.
— Spot influential documents per topic and index for fast retrieval



@ Classic Pagerank
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Image courtesy: http://parkcu.com/blog/pagerank/

Page, Lawrence, et al. "The PageRank citation ranking: Bringing order to the web." (1999).



Topic Sensitive or Personalized Pagerank
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Image courtesy: http://parkcu.com/blog/pagerank/

Haveliwala, Taher H. "Topic-sensitive pagerank." Proceedings of the 11th
international conference on World Wide Web. ACM, 2002.



@ Evaluation

« A/B Testing

— Measure the difference in user behavior
(implicit/explicit signals and retention):

« “A Recommended item” vs. “Randomly picked item
from the set”

« “Serendipity free stumbling session” vs. “Sessions
with serendipitous recommendations”



@ Ongoing Work

* More online computations

* Model/Feature Improvements

— E.g. authorship, published date, device
optimizations etc.,

* Dupe detection improvements
» Better Recs! ©
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