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StumbleUpon – Choose Topics, Discover Content




Bookmark, Organize and Share
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Recommendations – Matching User With Content
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•  Understand User

–  User Quality

–  Latent Interests


•  Understand Content

–  Content Quality 

–  {Spam, Dupes} Detection

–  Spotting Dead + Parked Pages

–  Handling different content types


•  Recommendations

–  Rec Quality

–  Managing item supply/demand + churn

–  Keep learning


•  Business Related

–  One rec at a time

–  Don’t show already seen content

–  Constantly changing product/use-cases


Problems and Challenges
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Architecture II


Rec Models	
Rec Models	

Rec Models	
Rec Models	
Filter
 Sort
Method


Recommendation Strategy


Cache


Mixer


Event 
Consumers	


Recommendation Engine




1.  Ingestion Entry point for items; Feature 
extraction


2.  Initial Recs

–  Cold start Optimize for maximum expected 

positive ratings and satisfy item demand

3.  Head Recs


–  Trending Popular in the short run

–  Timeless Popular in the long run


4.  Tail Recs

–  Collaborative Filtering Nearest neighbors 

based on user signals

–  Serendipitous Recs Unexpected but relevant


Item Lifecycle in a Recommender System




•  What?

–  Recommend the “unexpected but useful”

–  “Go beyond relevance” and look for “interestingness”


•  Why?

–  “Helps avoid tunnel vision”

–  Allows exploration, enables true discovery


•  Challenges

–  Figuring out how to serve good content that is not random, is 

unexpected but useful…Hmm

–  Measuring/Controlling serendipity


Serendipitous Recs


Bordino I. et al., Penguins in sweaters, or serendipitous entity search on user-generated content, CIKM 2013 



Serendipitous Surfing
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•  Some relevant features

–  Topics

–  Keywords

–  Language

–  Mime Type

–  Content Type

–  Number of Ads

–  Number of Links

–  Responsive Design

–  Overlays/Popups and more…


Characterizing Content




•  What

–  Discover underlying topic structure

–  Annotate documents

–  Index/Search documents


•  Applications

–  Content Categorization

–  Dimensionality Reduction

–  User modeling


Topic Models


Blei, David M. "Probabilistic topic models." Communications of the ACM 55.4 
(2012): 77-84. 



•  Requirements

–  Categorize documents to a predefined topic taxonomy

–  Cluster documents into broader groups


•  Applications

–  Search and recommendations

–  Evaluate user’s categorization/re-categorization of documents

–  Discovering related interests


Content Categorization
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Milne, David, and Ian H. Witten. "An open-source toolkit for mining Wikipedia." 
Artificial Intelligence 194 (2013): 222-239. 



•  Naïve Bayes Classifier!
–  Words are generated from one mixture!
–  Words are independently distributed given 

topic!

Content Categorization: Discovering topics
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•  Supervised and generative (fully probabilistic)

•  Efficient in both training and classification

•  Easy to Implement an online version

•  Dependent on a static vocabulary (retrain if vocabulary 

changes)

•  Very restricted means of identifying semantic groups from 

a mixture model 


Properties




Content Categorization: Discovering Semantic Groups


image courtesy: http://parkcu.com/blog/latent-dirichlet-allocation/ 

Blei, David M., Andrew Y. Ng, and Michael I. Jordan. "Latent dirichlet 
allocation." the Journal of machine Learning research 3 (2003): 
993-1022. 



•  Unsupervised (Classic LDA) and generative

•  Well suited for domain adaptation (taxonomy shift)

•  Allows making topic clusters as loose/tight as 

needed

–      controls the peak-ness of the document-topic 

distributions

–      controls the peak-ness of the topic-word 

distributions

•  Can be extended to discover relations, 

hierarchies, etc.,


Properties
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•  Periodically evaluate the model

•  Perplexity


–  Measure of how surprised the model is on an average when having to guess 
between k equally probable choices.


–  The average log probability of the trained model having seen the test samples


•  Use human judgment from word intrusion and topic 
intrusion tasks




•  Good topic associations can be initialized from previous 

trainings or from separate topic clustering


Evaluation + Relearning


2Entropy = 2− p log p∑



Topic Mixtures
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•  Dimensionality Reduction

–  Build LDA model using “Head” URLs

–  Use the model to classify “Tail” URLs in Latent Topic Space


•  Document Graph

–  Compute pairwise similarity between documents with topic 

overlaps Cosine Similarity, Weighted Jaccard

–  Build a graph where documents make up the nodes and the 

similarity score make up the edge weights.

•  Page Rank


–  Run topic sensitive page rank over the document graph.

–  Spot influential documents per topic and index for fast retrieval


Methodology




Classic Pagerank


Image courtesy: http://parkcu.com/blog/pagerank/ 

Page, Lawrence, et al. "The PageRank citation ranking: Bringing order to the web." (1999). 



Topic Sensitive or Personalized Pagerank


Image courtesy: http://parkcu.com/blog/pagerank/ 

Haveliwala, Taher H. "Topic-sensitive pagerank." Proceedings of the 11th 
international conference on World Wide Web. ACM, 2002. 



•  A/B Testing

– Measure the difference in user behavior 

(implicit/explicit signals and retention):

•  “A Recommended item” vs. “Randomly picked item 

from the set”

•  “Serendipity free stumbling session” vs. “Sessions 

with serendipitous recommendations”


Evaluation




•  More online computations

•  Model/Feature Improvements

– E.g. authorship, published date, device 

optimizations etc.,

•  Dupe detection improvements

•  Better Recs! J


Ongoing Work
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