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Understanding is needed

A growing proportion of queries require semantic interpretation.

Conventional keyword-based retrieval does not suffice!



Wolfram Alpha

Compositional Semantics

[ two times two minus two [ Which states border California?

O == Iy IO ==

Input:

2x2—2

Assuming "California® is a US state | Use as an administrative division instead

Result:

2

Input interpretation:

California bordering states

Result:

Oregon | Nevada | Arizona

Slide adapted from Bill McCartney



Wolfram Alpha

Compositional Semantics

[ Which US states are islands?

= O B ==y

Assuming all US states with District of Columbia | Use all US states instead

Input interpretation:

notable islands i1 all US states with District of Columbia

[ Which U.S. states border no U.S. states?

E D E D

Using closest Wolfram|Alpha interpretation: Which U.S. states border

More interpretations: country U.S.

Slide adapted from Bill McCartney



Meaning and Semantic Representation

Message

Utterances
in natural language

Semantic Parsing

TETTTTTTTITYY

Semantic Representation

Query Languages (SQL)
Lambda calculi
Programming languages (Scala)

Execution

—>

Denotation

Model

DB /KB
Mental Status

World



Meaning and Semantic Representation

Semantic Parsing Execution

Message TETTTEETTRITEY Semantic Representation — Denotation

one plus two Add(1, 2)

Add(Neg(2), 3)
minus two plus three
Neg(Add(2, 3))

Noun(crane, bird)
crane
Noun(crane, machine)




Meaning and Semantic Representation

Semantic Parsing Execution
Message @  =sssssssssuns o> Semantic Representation —_— Denotation
two is less than three LessThan(2, 3) T
(1 to 4).
the sum of one to four 10

foldRight(zero)(Add(_,_))



Compositionality Principle

“The meaning of a sentence is a function of the meanings of the parts and of
the way they are syntactically combined.”



Compositionality Principle

old l1nguists and engineers

minus two plus three



Compositionality Principle

old Ti1nguists and engineers

minus two plus three



Compositionality Principle
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Compositionality Principle
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Learning Compositionality

“‘compositionality characterizes the recursive nature of the linguistic ability
required to generalize to a creative capacity, and learning details the conditions
under which such an ability can be acquired from data.”



Learning Challenge

Learning Dependency-Based
Compositional Semantics

Percy Liang”
University of California, Berkeley

Michael I. Jordan™*
University of California, Berkeley

Dan Klein'
University of California, Berkeley

Suppose we want to build a system that answers a natural language question by representing its
semantics as a logical form and computing the answer given a structured database of facts. The
core part of such a system is the semantic parser that maps questions to logical forms. Semantic
parsers are typically trained from examples of questions annotated with their target logical forms,
but this type of annotation is expensive.

Our goal is to instead learn a semantic parser from question—answer pairs, where the logical
form is modeled as a latent variable. We develop a new semantic formalism, dependency-based
compositional semantics (DCS) and define a log-linear distribution over DCS logical forms. The
model parameters are estimated using a simple procedure that alternates between beam search
and numerical optimization. On two standard semantic parsing benchmarks, we show that our
system obtains comparable accuracies to even state-of-the-art systems that do require annotated
logical forms.

1. Introduction

One of the major challenges in natural language processing (NLP) is building systems
that both handle complex linguistic phenomena and require minimal human effort. The
difficulty of achieving both criteria is particularly evident in training semantic parsers,
where annotating linguistic expressions with their associated logical forms is expensive
but until recently, seemingly unavoidable. Advances in learning latent-variable models,
however, have made it possible to progressively reduce the amount of supervision
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Learning Challenge
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Structured Prediction

Four pieces

initial grammar (refined during the learning)



Structured Prediction
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Structured Prediction




Structured Prediction

Four pieces
initial grammar (refined during the learning)
a feature representation of the data
an objective function

an algorithm for optimizing the objective function



Initial grammar

lazy val expr: Parser[Expr] = (

expr ~ "plus™ ~ expr "* ¢ (el, _, e2) => Add(el, e2, "p

expr ~ "plus” ~ expr "* ¢ (el, _, e2) => Mul(el, e2, "p

expr ~ "plus" ~ expr " { (el, _, e2) => Sub(el, e2, "p
| term

)

val numbers = List("one", "two", "three", .., "nine")
val terms = for §{

n <- numbers

X <- 1 to 9
} yield (n ~ { => IntLit(x, n) })

val term = terms.reduceLeft( | )




Algebraic Data Types

sealed trait Expr

trait BinExpr extends Expr
trait UnkExpr extends EXxpr

case
case
case
case

case

] ass
ass
ass
ass

O O O O

class

Add(el: Expr, e2: Expr, label: String) extends BinExpr
Sub(el: Expr, e2: Expr, label: String) extends BinExpr
Mul(el: Expr, e2: Expr, label: String) extends BinExpr
Neg(e: Expr, label: String) extends UnExpr

IntLit(i: Int, Tlabel: String) extends Expr



Denotations as Catamorphisms

Synthesis Framework

“‘compositionality outlines a recursive interpretation process in which the
lexical items are listed as base cases and the recursive clauses define the

modes of combination.”
Liang and Potts (2015: 359)

“Fold is a generic transform for any algebraic data type”
Noel Welsh (2015)

Fold provides the appropriate abstraction over structural recursion



Featurization with Catamorphisms

def foldt[A,B](f: Expr => Int, c: Int, g: Expr => (Int => Int => Int))(t: Expr): Int =
t match {
case IntLit(a, 1) => f(IntLit(a, 1))
case u: UnExpr => g(u)(c)(foldt(f, c, g)(u.e))
case b: BinExpr => g(b)(foldt(f, c, g)(b.el))(foldt(f, c, g)(b.e2))



Algebraic Data Types

minus two plus three
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Polymorphic implementation of SGD

def latentSGD[U,S,D](dataset: List[(U, S, D)], phi: Phi[U,S,D], numIter: Int,
eta: Double, classes: U => List[S], transform: S => D,
cost: (S, S) => Double): Weight[U,D] = {

for (t <- 8 until numIter) {
for ((x, ys, d) <- shuffledData) {
val monadicClass = (z: U) => for {
zd <- classes(z)
if transform(zd) ==
¥ yield zd
// Get the best viable candidate given the current weights:
val y = predict(x, phi, w, monadicClass, transform)
// Get all (score, y') pairs:
val scores = for(yAlt <- classes(x)) yield (score(x, yAlt, phi, w) + cost(y, yAlt), uyAlt)
// Get the maximal score
// Get all the candidates with the max score and chose one randomly
// Update the weights

&



Results

INTERPRETIVE

Learned feature weights

Training:

Input: one plus one
Gold: 1 +1
Prediction: 1 + 1
Correct: true

Input: one plus tuo
Gold: 1 +2
Prediction: 1 + 2
Correct: true

Input: one plus three
Gold: 1+3

Prediction: 1 + 3
Correct: true



Results

Test.:
Input: minus three
Gold: -3
Prediction: -3
Correct: true
Input: three plus tuo
Gold: 3 +2
Prediction: 3 + 2
Correct: true
Input: minus four
Gold: —4

Prediction: -1
Correct: false



CONTINUOUS REPRESENTATIONS



Distributional hypothesis

Firth (1957)
“You shall know a word by the company it keeps.”’

“the complete meaning of a word is always contextual, and no study of
meaning apart from context can be taken seriously.”

Harris (1954)

“distributional statements can cover all of the material of a language
without requiring support from other types of information.”

Turney and Pantel (2010)

“If units of text have similar vectors in a text frequency matrix, then they
tend to have similar meanings.’



Distributed Representations

Syntax Representation
N rollercoaster [1.01.0 l.O]T
N airplane [1.0 0.0 l.O]T
N — website 0.0 1.0 1.0]"
N movie 0.00.0 1.0]
63 63 25
A unpredictable 44 44 65
00 00 10
N A N o(FTATTNT)




Distributed Representations
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Distributed Representations

website
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website
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Architectures

Different architectures for composing distributed representations
Algebraic composition



Architectures

Different architectures for composing distributed representations
Algebraic composition

Operation Function

Additive p = au+ Ov

General Additive p = Au+ Bv

Multiplicative P=u® v

Tensor P=UQ® Vv

Dilation p=U-uy)v+(A—1)(u-v)u




Architectures

Different architectures for composing distributed representations
Algebraic composition

Parameterized composition
» Coecke et al. 2010



Architectures

Different architectures for composing distributed representations
Algebraic composition

Parameterized composition
Recursive composition

* Recursive Neural Networks
* Recurrent Neural Networks

* Long-Short Term Memory (LSTM)

* Convolutional Neural Networks



Neural Network Architectures for Semantics

Softmax classifier P(C) = 0.8

Comparison

N(T)N layer all reptiles walk vs. some turtles move

/ N

Composition all reptiles walk some turtles move

RN(T)N TN TN

layers all reptiles walk some turtles Mmove

TN TN

all reptiles some turtles

Pre-trained or randomly initialized learned word vectors

arXiv:1406.1827v3 [cs.CL] 3 Mar 2015

Recursive Neural Networks Can Learn Logical Semantics

Samuel R. Bowman*'
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Abstract

Tree-structured recursive neural networks
(TreeRNNs) for sentence meaning have
been successful for many applications, but
it remains an open question whether the
fixed-length representations that they learn
can support tasks as demanding as logi-
cal deduction. We pursue this question
by evaluating whether two such models—
plain TreeRNNs and tree-structured neural
tensor networks (TreeRNTNs)—can cor-
rectly learn to identify logical relation-
ships such as entailment and contradiction
using these representations. In our first set
of experiments, we generate artificial data
from a logical grammar and use it to eval-
uate the models’ ability to learn to handle
basic relational reasoning, recursive struc-
tures, and quantification. We then evaluate
the models on the more natural SICK chal-
lenge data. Both models perform compet-
itively on the SICK data and generalize
well in all three experiments on simulated
data, suggesting that they can learn suit-
able representations for logical inference
in natural language.

1 Introduction

Tree-structured recursive neural network models
(TreeRNNSs; Goller and Kuchler 1996) for sen-
tence meaning have been successful in an array of
sophisticated language tasks, including sentiment
analysis (Socher et al., 2011b; Irsoy and Cardie,
2014), image description (Socher et al., 2014),
and paraphrase detection (Socher et al., 2011a).
These results are encouraging for the ability of
these models to learn to produce and use strong
semantic representations for sentences. However,
it remains an open question whether any such fully
learned model can achieve the kind of high-fidelity

Stanford NLP Group iStanford Computer Science

distributed representations proposed in recent al-
gebraic work on vector space modeling (Coecke
et al., 2011; Grefenstette, 2013; Hermann et al.,
2013; Rocktdschel et al., 2014), and whether any
such model can match the performance of gram-
mars based in logical forms in their ability to
model core semantic phenomena like quantifica-
tion, entailment, and contradiction (Warren and
Pereira, 1982; Zelle and Mooney, 1996; Zettle-
moyer and Collins, 2005; Liang et al., 2013).

Recent work on the algebraic approach of Co-
ecke et al. (2011) has yielded rich frameworks for
computing the meanings of fragments of natural
language compositionally from vector or tensor
representations, but has not yet yielded effective
methods for learning these representations from
data in typical machine learning settings. Past ex-
perimental work on reasoning with distributed rep-
resentations have been largely confined to short
phrases (Mitchell and Lapata, 2010; Grefenstette
et al., 2011; Baroni et al., 2012). However, for ro-
bust natural language understanding, it is essential
to model these phenomena in their full generality
on complex linguistic structures.

This paper describes four machine learning ex-
periments that directly evaluate the abilities of
these models to learn representations that sup-
port specific semantic behaviors. These tasks fol-
low the format of natural language inference (also
known as recognizing textual entailment; Dagan
et al. 2006), in which the goal is to determine
the core inferential relationship between two sen-
tences. We introduce a novel NN architecture for
natural language inference which independently
computes vector representations for each of two
sentences using standard TreeRNN or TreeRNTN
(Socher et al., 2013) models, and produces a judg-
ment for the pair using only those representations.
This allows us to gauge the abilities of these two
models to represent all of the necessary semantic
information in the sentence vectors.
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