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Compositional Semantics
Understanding is needed

A growing proportion of queries require semantic interpretation.  

Conventional keyword-based retrieval does not suffice! 
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Compositional Semantics
Meaning and Semantic Representation

Message Semantic Representation Denotation

Utterances  
in natural language

Query Languages (SQL) 
Lambda calculi 

Programming languages (Scala)

Model 
DB / KB 

Mental Status 
World

Semantic Parsing Execution



Compositional Semantics
Meaning and Semantic Representation

Message Semantic Representation Denotation
Semantic Parsing Execution
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Message Semantic Representation Denotation
Semantic Parsing Execution
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Compositional Semantics
Compositionality Principle

“The meaning of a sentence is a function of the meanings of the parts and of 
the way they are syntactically combined. “ 

Partee (1995)

Gottlob Frege Barbara Partee
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Compositional Semantics
Compositionality Principle

Notes for Scala Days 2015

Ling 230a: Introduction to semantics and pragmatics

Ignacio Cases
Christopher Potts
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Compositional Semantics
Learning Compositionality

“compositionality characterizes the recursive nature of the linguistic ability  
required to generalize to a creative capacity, and learning details the conditions  
under which such an ability can be acquired from data. “  

Liang and Potts (2015: 356)



Learning Compositionality
Learning Challenge

Percy Liang

Learning Dependency-Based
Compositional Semantics

Percy Liang∗
University of California, Berkeley

Michael I. Jordan∗∗
University of California, Berkeley

Dan Klein†

University of California, Berkeley

Suppose we want to build a system that answers a natural language question by representing its
semantics as a logical form and computing the answer given a structured database of facts. The
core part of such a system is the semantic parser that maps questions to logical forms. Semantic
parsers are typically trained from examples of questions annotated with their target logical forms,
but this type of annotation is expensive.

Our goal is to instead learn a semantic parser from question–answer pairs, where the logical
form is modeled as a latent variable. We develop a new semantic formalism, dependency-based
compositional semantics (DCS) and define a log-linear distribution over DCS logical forms. The
model parameters are estimated using a simple procedure that alternates between beam search
and numerical optimization. On two standard semantic parsing benchmarks, we show that our
system obtains comparable accuracies to even state-of-the-art systems that do require annotated
logical forms.

No rights reserved. This work was authored as part of the Contributor’s official duties as an Employee of
the United States Government and is therefore a work of the United States Government. In accordance with
17 U.S.C. 105, no copyright protection is available for such works under U.S. law.

1. Introduction

One of the major challenges in natural language processing (NLP) is building systems
that both handle complex linguistic phenomena and require minimal human effort. The
difficulty of achieving both criteria is particularly evident in training semantic parsers,
where annotating linguistic expressions with their associated logical forms is expensive
but until recently, seemingly unavoidable. Advances in learning latent-variable models,
however, have made it possible to progressively reduce the amount of supervision
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∗∗ Computer Science Division and Department of Statistics, University of California, Berkeley, CA 94720,
USA. E-mail: jordan@cs.berkeley.edu.

† Computer Science Division, University of California, Berkeley, CA 94720, USA.
E-mail: klein@cs.berkeley.edu.

Submission received: 12 September 2011; revised submission received: 19 February 2012; accepted for
publication: 18 April 2012.

doi:10.1162/COLI a 00127



Learning Compositionality
Learning ChallengeLiang, Jordan, and Klein Learning Dependency-Based Compositional Semantics

Figure 2
Our statistical methodology consists of two steps: (i) semantic parsing (p(z | x;θ)): an utterance x
is mapped to a logical form z by drawing from a log-linear distribution parametrized by a
vector θ; and (ii) evaluation ([[z]]w): the logical form z is evaluated with respect to the world w
(database of facts) to deterministically produce an answer y. The figure also shows an example
configuration of the variables around the graphical model. Logical forms z are represented as
labeled trees. During learning, we are given w and (x, y) pairs (shaded nodes) and try to infer
the latent logical forms z and parameters θ.

2010; Artzi and Zettlemoyer 2011; Goldwasser et al. 2011; Liang, Jordan, and Klein 2011).
It is in this vein that we develop our present work. Specifically, given a set of (x, y)
example pairs, where x is an utterance (e.g., a question) and y is the corresponding
answer, we wish to learn a mapping from x to y. What makes this mapping particularly
interesting is that it passes through a latent logical form z, which is necessary to capture
the semantic complexities of natural language. Also note that whereas the logical form
z was the end goal in much of earlier work on semantic parsing, for us it is just an
intermediate variable—a means towards an end. Figure 2 shows the graphical model
which captures the learning setting we just described: The question x, answer y, and
world/database w are all observed. We want to infer the logical forms z and the
parameters θ of the semantic parser, which are unknown quantities.

Although liberating ourselves from annotated logical forms reduces cost, it does
increase the difficulty of the learning problem. The core challenge here is program
induction: On each example (x, y), we need to efficiently search over the exponential
space of possible logical forms (programs) z and find ones that produce the target
answer y, a computationally daunting task. There is also a statistical challenge: How
do we parametrize the mapping from utterance x to logical form z so that it can be
learned from only the indirect signal y? To address these two challenges, we must first
discuss the issue of semantic representation. There are two basic questions here: (i) what

391

Liang et al. (2013: 391)



Learning Compositionality
Structured Prediction

Four pieces  

■ initial grammar (refined during the learning)



Learning Compositionality
Structured Prediction
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Learning Compositionality
Structured Prediction

Four pieces  

■ initial grammar (refined during the learning) 

■ a feature representation of the data  

■ an objective function 

■ an algorithm for optimizing the objective function 

Liang and Potts (2015)



Synthesis Framework
Initial grammar

 lazy val expr: Parser[Expr] = (  
      expr ~ "plus" ~ expr  ^^ { (e1, _, e2) => Add(e1, e2, "plus") }  
    | expr ~ "plus" ~ expr  ^^ { (e1, _, e2) => Mul(e1, e2, "plus") }  
    | expr ~ "plus" ~ expr  ^^ { (e1, _, e2) => Sub(e1, e2, "plus") } 
    ...  
    | term  
  )  

 val numbers = List("one", "two", "three", … , "nine")  
 
 val terms = for {  
   n <- numbers  
   x <- 1 to 9  
 } yield (n ^^ { _ => IntLit(x, n) })  

 val term = terms.reduceLeft(_ | _)



Synthesis Framework
Algebraic Data Types

sealed trait Expr  
 
trait BinExpr extends Expr  
trait UnExpr extends Expr 

case class Add(e1: Expr, e2: Expr, label: String) extends BinExpr  
case class Sub(e1: Expr, e2: Expr, label: String) extends BinExpr  
case class Mul(e1: Expr, e2: Expr, label: String) extends BinExpr  
case class Neg(e: Expr, label: String) extends UnExpr 
 
case class IntLit(i: Int, label: String) extends Expr



Synthesis Framework
Denotations as Catamorphisms

“compositionality outlines a recursive interpretation process in which the  
lexical items are listed as base cases and the recursive clauses define the  
modes of combination. “  

Liang and Potts (2015: 359) 

“Fold is a generic transform for any algebraic data type” 
Noel Welsh (2015) 

Fold provides the appropriate abstraction over structural recursion



Synthesis Framework
Featurization with Catamorphisms

def foldt[A,B](f: Expr => Int, c: Int, g: Expr => (Int => Int => Int))(t: Expr): Int =    
  t match {  
    case IntLit(a, l) => f(IntLit(a, l))  
    case u: UnExpr => g(u)(c)(foldt(f, c, g)(u.e))  
    case b: BinExpr => g(b)(foldt(f, c, g)(b.e1))(foldt(f, c, g)(b.e2))  
  }

def g(e: Expr): Int => Int => Int = e match {  
  case u: UnExpr => (x: Int) => u.fun  
  case b: BinExpr => b.fun  
}



Synthesis Framework
Algebraic Data Types
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Synthesis Framework
Polymorphic implementation of SGD

def latentSGD[U,S,D](dataset: List[(U, S, D)], phi: Phi[U,S,D], numIter: Int,  
   eta: Double, classes: U => List[S], transform: S => D,  
   cost: (S, S) => Double): Weight[U,D] = {  
   ... 
   for (t <- 0 until numIter) {  
     for ((x, ys, d) <- shuffledData) {  
       val monadicClass = (z: U) => for {  
         zd <- classes(z)  
         if transform(zd) == d  
       } yield zd  
       // Get the best viable candidate given the current weights:  
       val y = predict(x, phi, w, monadicClass, transform)  
       // Get all (score, y') pairs:  
       val scores = for(yAlt <- classes(x)) yield (score(x, yAlt, phi, w) + cost(y, yAlt), yAlt)  
       // Get the maximal score  
       // Get all the candidates with the max score and chose one randomly 
       // Update the weights 
       ...  
    }  
   }  
   w  
 }



Synthesis Framework
Results

INTERPRETIVE 
================================================== 
 Feature function: Catamorphism 
-------------------------------------------------- 
 Learned feature weights 
 Training: 
  
   Input:      one plus one 
   Gold:       1 + 1 
   Prediction: 1 + 1 
   Correct:    true 
       
   Input:      one plus two 
   Gold:       1 + 2 
   Prediction: 1 + 2 
   Correct:    true 
       
   Input:      one plus three 
   Gold:       1 + 3 
   Prediction: 1 + 3 
   Correct:    true



Synthesis Framework
Results

 Test: 
  
   Input:      minus three 
   Gold:       -3 
   Prediction: -3 
   Correct:    true 
       
   Input:      three plus two 
   Gold:       3 + 2 
   Prediction: 3 + 2 
   Correct:    true 

   Input:      minus four 
   Gold:       -4 
   Prediction: -1 
   Correct:    false



CONTINUOUS REPRESENTATIONS



Continuous Representations
Distributional hypothesis

Firth (1957)  
■ “You shall know a word by the company it keeps.”  

■ “the complete meaning of a word is always contextual, and no study of 
meaning apart from context can be taken seriously.”  

Harris (1954)  
■ “distributional statements can cover all of the material of a language 

without requiring support from other types of information.”  

Turney and Pantel (2010)  
■ “If units of text have similar vectors in a text frequency matrix, then they 

tend to have similar meanings.” 



Continuous Representations
Distributed Representations

et al. (2010, 2011) learn semantic parsers across four languages (English, Spanish, Turkish, and
Japanese).

Another major theme that arises from Section 4.2 is the importance of learning from denota-
tions—more generally, connecting language with the world. Many authors have considered this
setting using a variety of intermediate semantic representations. Applications include querying
databases (Clarke et al. 2010, Liang et al. 2011, Berant et al. 2013, Kwiatkowski et al. 2013),
interpreting natural language for performing programming tasks (Kushman&Barzilay 2013, Lei
et al. 2013), playing computer games (Branavan et al. 2010, 2011), following navigational
instructions (Vogel & Jurafsky 2010, Chen 2012, Artzi & Zettlemoyer 2013), implementing
dialogue systems (Artzi & Zettlemoyer 2011), and interacting in the real world via perception
(Tellex et al. 2011, Matuszek et al. 2012a, Krishnamurthy & Kollar 2013). The trend clearly
points toward incorporating more compositionality into these applications.

5. DISTRIBUTED REPRESENTATIONS

Wehave so far concentrated on semantic representations that are logical forms.We now introduce
an alternative perspective in which semantic representations are distributed representations—
vectors and matrices. Their real-valued nature provides a foundation for representing shades of
meaning, and with work, they can encode the same kinds of information as logical forms. Due to
space limitations, our discussion is brief, meant only to convey the general ideas and provide
connections with the vibrant literature.

For concreteness, we structure our discussion around a small example involving adjectival
modification (Mitchell & Lapata 2010), adapted from propositional logic cases analyzed by
Rumelhart et al. (1986a). Table 4 presents the grammar. The semantic representations for nouns
are three-dimensional column vectors. (We write them as transposed row vectors to save space;
aT is the transpose of a.) As an informal aid to understanding, one can think of the first dimension
as encoding concreteness and the second as encoding interactivity. The third is simply a bias term
that is always 1.Our single adjectiveunpredictable is represented as a333matrix, in analogywith
adjectives denoting higher-typed functions than the noun-type meanings they take as arguments.

The entire compositional computation of the denotation (Table 4b) can be described as a two-
layer neural network. The inputs to the network are the noun vectors. This vector is multiplied

Table 4

a b
Syntax

N  →  rollercoaster [1.0 1.0 1.0]
[1.0 0.0 1.0]
[0.0 1.0 1.0]
[0.0 0.0 1.0]

–6.3
–4.4
0.0

–6.3
–4.4
0.0

2.5
6.5
1.0

σ (   A     N  )

N  →  airplane
N  →  website
N  →  movie

N  →  unpredictable

 = [9.0  –8.8  5.6]

N  →  A  N

Representation d

y1 y2 y3

n1 n2 n3

y = σ (   A     N  )

N

A

d =  y   = σ ( y)
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et al. (2010, 2011) learn semantic parsers across four languages (English, Spanish, Turkish, and
Japanese).

Another major theme that arises from Section 4.2 is the importance of learning from denota-
tions—more generally, connecting language with the world. Many authors have considered this
setting using a variety of intermediate semantic representations. Applications include querying
databases (Clarke et al. 2010, Liang et al. 2011, Berant et al. 2013, Kwiatkowski et al. 2013),
interpreting natural language for performing programming tasks (Kushman&Barzilay 2013, Lei
et al. 2013), playing computer games (Branavan et al. 2010, 2011), following navigational
instructions (Vogel & Jurafsky 2010, Chen 2012, Artzi & Zettlemoyer 2013), implementing
dialogue systems (Artzi & Zettlemoyer 2011), and interacting in the real world via perception
(Tellex et al. 2011, Matuszek et al. 2012a, Krishnamurthy & Kollar 2013). The trend clearly
points toward incorporating more compositionality into these applications.

5. DISTRIBUTED REPRESENTATIONS

Wehave so far concentrated on semantic representations that are logical forms.We now introduce
an alternative perspective in which semantic representations are distributed representations—
vectors and matrices. Their real-valued nature provides a foundation for representing shades of
meaning, and with work, they can encode the same kinds of information as logical forms. Due to
space limitations, our discussion is brief, meant only to convey the general ideas and provide
connections with the vibrant literature.

For concreteness, we structure our discussion around a small example involving adjectival
modification (Mitchell & Lapata 2010), adapted from propositional logic cases analyzed by
Rumelhart et al. (1986a). Table 4 presents the grammar. The semantic representations for nouns
are three-dimensional column vectors. (We write them as transposed row vectors to save space;
aT is the transpose of a.) As an informal aid to understanding, one can think of the first dimension
as encoding concreteness and the second as encoding interactivity. The third is simply a bias term
that is always 1.Our single adjectiveunpredictable is represented as a333matrix, in analogywith
adjectives denoting higher-typed functions than the noun-type meanings they take as arguments.

The entire compositional computation of the denotation (Table 4b) can be described as a two-
layer neural network. The inputs to the network are the noun vectors. This vector is multiplied

Table 4

a b
Syntax

N  →  rollercoaster [1.0 1.0 1.0]
[1.0 0.0 1.0]
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Continuous Representations
Distributed Representations

et al. (2010, 2011) learn semantic parsers across four languages (English, Spanish, Turkish, and
Japanese).

Another major theme that arises from Section 4.2 is the importance of learning from denota-
tions—more generally, connecting language with the world. Many authors have considered this
setting using a variety of intermediate semantic representations. Applications include querying
databases (Clarke et al. 2010, Liang et al. 2011, Berant et al. 2013, Kwiatkowski et al. 2013),
interpreting natural language for performing programming tasks (Kushman&Barzilay 2013, Lei
et al. 2013), playing computer games (Branavan et al. 2010, 2011), following navigational
instructions (Vogel & Jurafsky 2010, Chen 2012, Artzi & Zettlemoyer 2013), implementing
dialogue systems (Artzi & Zettlemoyer 2011), and interacting in the real world via perception
(Tellex et al. 2011, Matuszek et al. 2012a, Krishnamurthy & Kollar 2013). The trend clearly
points toward incorporating more compositionality into these applications.

5. DISTRIBUTED REPRESENTATIONS

Wehave so far concentrated on semantic representations that are logical forms.We now introduce
an alternative perspective in which semantic representations are distributed representations—
vectors and matrices. Their real-valued nature provides a foundation for representing shades of
meaning, and with work, they can encode the same kinds of information as logical forms. Due to
space limitations, our discussion is brief, meant only to convey the general ideas and provide
connections with the vibrant literature.

For concreteness, we structure our discussion around a small example involving adjectival
modification (Mitchell & Lapata 2010), adapted from propositional logic cases analyzed by
Rumelhart et al. (1986a). Table 4 presents the grammar. The semantic representations for nouns
are three-dimensional column vectors. (We write them as transposed row vectors to save space;
aT is the transpose of a.) As an informal aid to understanding, one can think of the first dimension
as encoding concreteness and the second as encoding interactivity. The third is simply a bias term
that is always 1.Our single adjectiveunpredictable is represented as a333matrix, in analogywith
adjectives denoting higher-typed functions than the noun-type meanings they take as arguments.

The entire compositional computation of the denotation (Table 4b) can be described as a two-
layer neural network. The inputs to the network are the noun vectors. This vector is multiplied
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a b
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N  →  rollercoaster [1.0 1.0 1.0]
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Continuous Representations
Distributed Representations

(Clark et al. 2011). Inmore complexmodels, words are represented not only by vectors but also by
matrices and higher-dimensional tensors, creating the possibility for richer modes of semantic
combination. For a review of proposals that can be cast as elaborations of the above, see Socher
et al. 2013b, section 4.

In practice, distributed representations typically encode not only semantic information, but
also a mix of morphological, syntactic, and semantic associations (Turney & Pantel 2010,
Grefenstette et al. 2011, Lewis & Steedman 2013). Supervised training of distributed repre-
sentations has, in turn, proven helpful for a variety of problems, including syntactic parsing
(Socher et al. 2013a), part-of-speech tagging, named-entity recognition, noun-phrase chunking,
and semantic-role labeling (Collobert & Weston 2008, Collobert et al. 2011).

To date, these models have been applied only to narrow aspects of the full task of semantic
interpretation; the bulk of the work has gone to sentiment analysis, in which the denotations can

website
[0,1]unpredictable

website
[0.02,0.89]

unpredictable
airplane

rollercoaster
[1,1]

[0.92,1]
     unpredictable
     movie

[0,0.09]

unpredictable
rollercoaster

[0,0]
movie

[1,0]
airplane

Figure 3

Modification by unpredictable, using the grammar inTable 4. The arrows depict the action of our composition
function, which maps the noun meanings into different parts of the space as a result of their adjectival
modification. In this case, the network brought the negative phrases to the same vector and more or less
swapped the positions of the two positive phrases. (Other vectors of the adjective have different effects but lead
to similar groupings.) The colors reflect the final output denotation, with blue indicating a denotation near 1
and red indicating a denotation near 0.

Table 5 Training data used to learn the parameters
£unpredictable· and d

Phrase x 5 (a, n) Denotation d

unpredictable rollercoaster 1

unpredictable airplane 0

unpredictable website 0

unpredictable movie 1
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Hermann (2014)

Different architectures for composing distributed representations 
■ Algebraic composition
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Architectures

Hermann (2014)

Different architectures for composing distributed representations 
■ Algebraic composition

Operation Function

Additive p = ↵u+ �v
General Additive p = Au+Bv

Multiplicative p = u� v

Tensor p = u⌦ v

Dilation p = (u · u) v + (�� 1) (u · v)u

Table 4.2: Comparison of some algebraic operators frequently used in the literature for
composing distributed semantic representations. u and v are inputs, p the composed repre-
sentation. ↵, � are scalar weights, A and B matrices, and � is a scalar stretching factor.

product) — see Table 4.2 (Mitchell and Lapata, 2008; Mitchell and Lapata, 2009; Guevara,

2010; Zanzotto et al., 2010, inter alia). Related research also includes holographic reduced

representations, random indexing and convolution products (Widdows, 2004; Widdows,

2008). An extensive survey of these algebraic operators applied to semantic composition

can be found in Mitchell and Lapata (2010) together with comparative results across a

number of tasks. When applied recursively, such models are frequently augmented with a

non-linearity such as a hyperbolic tangent or sigmoid function. Among other effects, this

ensures that word ordering is accounted for in the model, resulting in different representa-

tions depending on the composition order. One popular model that uses such a composition

function are recursive autoencoders as presented in Socher et al. (2011b).

Limitations While again some success could be shown for specific tasks such as similar-

ity ratings of adjective-noun, noun-noun and verb-object pairs, all of these algebraic oper-

ators face similar limitations as the additive model. Many algebraic operators ignore word

ordering, thereby essentially turning these composition models into bag of word models.

Even those algebraic operators that take word order into account, such as tensor products

or dilation, ignore all syntactic information. This limitation contradicts evidence from the

literature which suggests that such syntactic information is not only useful but necessary

for semantic composition. Chapter 5 investigates this question by empirically studying the

role of syntax in compositional semantics.

Beyond this, some algebraic models suffer from tendencies caused by their underlying

algebraic functions. For instance, multiplicative models will tend to zero with increasing

sentence length, while additive models will tend to the average word representation in

53
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Different architectures for composing distributed representations 
■ Algebraic composition 

■ Parameterized composition 

• Coecke et al. 2010
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Hermann (2014)

Different architectures for composing distributed representations 
■ Algebraic composition 

■ Parameterized composition 

■ Recursive composition 

• Recursive Neural Networks 

• Recurrent Neural Networks 

• Long-Short Term Memory (LSTM) 

• Convolutional Neural Networks
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Abstract

Tree-structured recursive neural networks
(TreeRNNs) for sentence meaning have
been successful for many applications, but
it remains an open question whether the
fixed-length representations that they learn
can support tasks as demanding as logi-
cal deduction. We pursue this question
by evaluating whether two such models—
plain TreeRNNs and tree-structured neural
tensor networks (TreeRNTNs)—can cor-
rectly learn to identify logical relation-
ships such as entailment and contradiction
using these representations. In our first set
of experiments, we generate artificial data
from a logical grammar and use it to eval-
uate the models’ ability to learn to handle
basic relational reasoning, recursive struc-
tures, and quantification. We then evaluate
the models on the more natural SICK chal-
lenge data. Both models perform compet-
itively on the SICK data and generalize
well in all three experiments on simulated
data, suggesting that they can learn suit-
able representations for logical inference
in natural language.

1 Introduction

Tree-structured recursive neural network models
(TreeRNNs; Goller and Kuchler 1996) for sen-
tence meaning have been successful in an array of
sophisticated language tasks, including sentiment
analysis (Socher et al., 2011b; Irsoy and Cardie,
2014), image description (Socher et al., 2014),
and paraphrase detection (Socher et al., 2011a).
These results are encouraging for the ability of
these models to learn to produce and use strong
semantic representations for sentences. However,
it remains an open question whether any such fully
learned model can achieve the kind of high-fidelity

distributed representations proposed in recent al-
gebraic work on vector space modeling (Coecke
et al., 2011; Grefenstette, 2013; Hermann et al.,
2013; Rocktäschel et al., 2014), and whether any
such model can match the performance of gram-
mars based in logical forms in their ability to
model core semantic phenomena like quantifica-
tion, entailment, and contradiction (Warren and
Pereira, 1982; Zelle and Mooney, 1996; Zettle-
moyer and Collins, 2005; Liang et al., 2013).

Recent work on the algebraic approach of Co-
ecke et al. (2011) has yielded rich frameworks for
computing the meanings of fragments of natural
language compositionally from vector or tensor
representations, but has not yet yielded effective
methods for learning these representations from
data in typical machine learning settings. Past ex-
perimental work on reasoning with distributed rep-
resentations have been largely confined to short
phrases (Mitchell and Lapata, 2010; Grefenstette
et al., 2011; Baroni et al., 2012). However, for ro-
bust natural language understanding, it is essential
to model these phenomena in their full generality
on complex linguistic structures.

This paper describes four machine learning ex-
periments that directly evaluate the abilities of
these models to learn representations that sup-
port specific semantic behaviors. These tasks fol-
low the format of natural language inference (also
known as recognizing textual entailment; Dagan
et al. 2006), in which the goal is to determine
the core inferential relationship between two sen-
tences. We introduce a novel NN architecture for
natural language inference which independently
computes vector representations for each of two
sentences using standard TreeRNN or TreeRNTN
(Socher et al., 2013) models, and produces a judg-
ment for the pair using only those representations.
This allows us to gauge the abilities of these two
models to represent all of the necessary semantic
information in the sentence vectors.
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Much of the theoretical work on natural lan-
guage inference (and some successful imple-
mented models; MacCartney and Manning 2009;
Watanabe et al. 2012) involves natural logics,
which are formal systems that define rules of in-
ference between natural language words, phrases,
and sentences without the need of intermediate
representations in an artificial logical language.
In our first three experiments, we test our mod-
els’ ability to learn the foundations of natural lan-
guage inference by training them to reproduce the
behavior of the natural logic of MacCartney and
Manning (2009) on artificial data. This logic de-
fines seven mutually-exclusive relations of syn-
onymy, entailment, contradiction, and mutual con-
sistency, as summarized in Table 1, and it pro-
vides rules of semantic combination for project-
ing these relations from the lexicon up to com-
plex phrases. The formal properties of this sys-
tem are now well-understood (Icard and Moss,
2013a; Icard and Moss, 2013b). The first exper-
iment using this logic covers reasoning with the
bare logical relations (§3), the second extends this
to reasoning with statements constructed compo-
sitionally from recursive functions (§4), and the
third covers the additional complexity that results
from quantification (§5). Though the performance
of the plain TreeRNN model is somewhat poor
in our first experiment, we find that the stronger
TreeRNTN model generalizes well in every case,
suggesting that it has learned to simulate our target
logical concepts.

The experiments with simulated data provide a
convincing demonstration of the ability of neural
networks to learn to build and use semantic repre-
sentations for complex natural language sentences
from reasonably-sized training sets. However, we
are also interested in the more practical question of
whether they can learn these representations from
naturalistic text. To address this question, we ap-
ply our models to the SICK entailment challenge
data in §6. The small size of this corpus puts data-
hungry NN models like ours at a disadvantage,
but we are nonetheless able to achieve competi-
tive performance on it, surpassing several submit-
ted models with significant hand-engineered task-
specific features and our own NN baseline. This
suggests that the representational abilities that we
observe in the previous sections are not limited to
carefully circumscribed tasks. We conclude that
TreeRNTN models are adequate for typical cases

P (@) = 0.8

all reptiles walk vs. some turtles move

Softmax classifier

Comparison
N(T)N layer

Composition
RN(T)N
layers

Pre-trained or randomly initialized learned word vectors
all reptiles

all reptiles walk

all reptiles walk

some turtles

some turtles move

some turtles move

Figure 1: In our model, two separate tree-
structured networks build up vector representa-
tions for each of two sentences using either NN
or NTN layer functions. A comparison layer then
uses the resulting vectors to produce features for a
classifier.

of natural language inference, and that there is not
yet any clear level of inferential complexity for
which other approaches work and NN models fail.

2 Tree-structured neural networks

We limit the scope of our experiments in this paper
to neural network models that adhere to the lin-
guistic principle of compositionality, which says
that the meanings for complex expressions are de-
rived from the meanings of their parts via specific
composition functions (Partee, 1984; Janssen,
1997). In our distributed setting, word meanings
are embedding vectors of dimension n. A learned
composition function maps pairs of them to single
phrase vectors of dimension n, which can then be
merged again to represent more complex phrases,
forming a tree structure. Once the entire sentence-
level representation has been derived at the top of
the tree, it serves as a fixed-dimensional input for
some subsequent layer function.

To apply these recursive models to our task, we
propose the tree pair model architecture depicted
in Fig. 1. In it, the two phrases being compared are
processed separately using a pair of tree-structured
networks that share a single set of parameters. The
resulting vectors are fed into a separate compari-
son layer that is meant to generate a feature vec-
tor capturing the relation between the two phrases.
The output of this layer is then given to a softmax
classifier, which produces a distribution over the
seven relations represented in Table 1.

For the sentence embedding portions of the net-
work, we evaluate both TreeRNN models with the
standard NN layer function (1) and those with the
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