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Outline
1. Text Classification

a. The basic problem and standards approaches
b. Challenges of text classification 

2. Deep learning: 
a. Auto-encoding as a signal compressor

3. Doc2Vec as a feature space generator:

a. What is Word2Vec
b. Word vectors to Doc2Vec as feature engineering

4. Benchmarking under Label Sparsity and imbalance
a. Supervised Learning: Document Vectors vs. BOW features
b. OOS improvement with Doc2Vec engineering under imbalance

5. Conclusions



Document Classification (Supervised)
Preprocessing

Stemming
Capitalization
Punctuation

Feature Engineering

PCA
Sparsity filtering

TF-IDF
Transformations/Scaling

BOW
Context embedding

Feature Selection

Regularization
Feature Importance
Correlation Modeling

Model Training

Classifiers:
Random Forest

Logistic Regression
Naive Bayes

...
ANN

Feature Engineering

PCA
Sparsity Filtering

TF-IDF
Transformations/Scaling

BOW
Context Embedding

Auto Encoding



Document Classification (Unsupervised)
Preprocessing

Stemming
Capitalization
Punctuation

Feature Engineering

PCA
Sparsity Filtering

TF-IDF
Transformations/Scaling

BOW
Context Embedding

Auto Encoding

Unsupervised Training

LDA
Document Clustering

...
Doc2vec



Data Challenges:
1. Data Quality 

a. Data Shape: Feature count ! >> Data count
i. Curse of dimensionality (supervised and unsupervised)

b. Data Sparsity: 
i. Documents contain small subset of feature terms

c. Lack of training examples (supervised):
i. Too few training examples for each class

ii. Imbalanced population:  count of (+)s << count of (-)s 

Document Classification



What is Deep Learning?
Deep learning is...
  Artificial Neural Network w/ multiple hidden layers 

in out

Hidden layers

...



AutoEncoder for Feature Compression
Minimize reconstruction error  J = Loss(X,Z)
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Minimize prediction error  J = Loss(out,label)
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Minimize prediction error  J = Loss(out,label)

 out

   AE for Pre-training of Supervised Net

Network “fine-tuned” by supervised BackProp
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Downsides:
● Unstable
● Difficult to implement
● Tuning cost scales with order of taxonomy node count

○ Time consuming
○ Expensive 
○ Training label cost

   AE for Pre-training of Supervised Net
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What is Word2Vec?

Continuous vector representation for individual 
terms:
● Trained to specialize in sentence completion
● n-gram or skip gram
● Learns grammar
● Learns conceptual relationships



Word2Vec

wj actual

N-gram ANN classifier:

1. Project the “context” hj 

(wj-n+1to wj-1)

2. Soft-max predictor for output 
layer

3. Use BackProp algorithm to 
execute gradient descent to 
tune ANN loss on the actual wj

(Can also do a “skip gram”)

Ww2v



Ww2v Matrix Captures Conceptual Relations:
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What is Doc2Vec?
Taking the linear combination of every term in the 
document creates a random walk with bias process in 
the w2v space.

● In aggregate, the sum vector 
drifts in the direction of the 
aggregate topic of the 
document.  



What is Doc2Vec?
Taking the linear combination of every term in the 
document creates a random walk with bias process in 
the w2v space.

● And taxonomy topics can 
also be embedded into the 
w2v space.  

Class-struggle



What is Doc2Vec?
Taking the linear combination of every term in the 
document creates a random walk with bias process in 
the w2v space.

● The direction of the drift 
vector tends to rotate to the 
direction of topic of the text.

Class-struggle
Normalized drift 
vector
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What is Doc2Vec?
Taking the linear combination of every term in the 
document creates a random walk with bias process in 
the w2v space.

● The angle of the drift vector 
can then be used as a topic 
feature for the vector

● Distance (cos, L1, L2, etc) 
are effective doc features 
applied to text classification. 
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w2v as Feature Compression
Minimize prediction error  J = Loss(out,label)

outXbow

out

Xw2v

Ww2v W

Word embeddings pre-trained on 
large,external corpus

Can use transformations 
including doc2vec features to 
enhance features

Your favorite classifier!



w2v as Feature Compression
Benefits:
● Sparse vectors made dense

● Training time restricted to output layer

● No expensive hyperparameter search

● More effective usage of sparse labels

outXbow

out

Xw2v

Ww2v W



w2v with Sparse Labels
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Imbalance in Text 
● Text classification problems are typically very 

imbalanced.
○ Small number of (+)s vs (-)s

● Because of imbalance, real model performance can be 
far worse than estimated by balanced testing.

● Re-thresholding can help models perform well even 
under imbalanced conditions.

● Using feature selection to make classes well separated is 
essential to successful thresholding.



Comparing w2v and BOW

Significant loss of F1 is incurred in achieving well separated class distributions
● bow 300:   F1 = .933
● bow 10:     F1 = .885



Comparing w2v and BOW

With doc2vec feature engineering, F1 is higher overall and we achieve well separated 
class distributions with smaller loss in precision and recall

● w2v 300: F1 = .964
● w2v 10: F1 = .946
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Full population score distributions predicted from fits on the w2v class distributions
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Better Label Imbalance Management

Modest Imbalance ratio 10:1
Full population score distributions predicted from fits on the w2v class distributions
Without proper feature selection even high performing classifier will fail in imbalanced context

● Unambiguous thresholding 
under extreme imbalance.

● Confident, semi-supervised 
estimate of imbalance ratio.

● Ambiguous seperation of 
(+) and (-) cases

● Cost in gathering labeled 
training sets for boundary 
case





Conclusions
● Pretrained w2v provides a low investment entry to ‘deep’ text classification 

by circumventing pre-training phase (dAE,RBM)

● Results are competitive in F1 for highly optimized BOW, and dominate for 
cases with small training sets

● Ensemble of expert trees helps deal with precision problem at extreme 
imbalance.

○ Feature selection and well-engineered w2v features avoids washout 
effects of imbalanced populations 

○ Requires far less investment in training examples of boundary cases

○ Enables more efficient scaling for larger space of text class taxonomy
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