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Unlocking Our Health Data
Transforming Unstructured Data at Scale
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Human API

✤ Launched Summer 2013 

✤ Based in Redwood City, CA

✤ Building a unified health data platform

✤ Enable next generation health applications

✤ Easy integration of health data from “anywhere”



What problems are we solving?



The Old and the New

✤ Health data lives in silos (both old and new)

✤ Old “legacy systems” have a number of 
technical challenges for data access.

✤ New systems are technically easier with 
modern APIs and JSON data.

✤ No universal standards

✤ We are enabling developers to work with data 
from any type of system using one API. 
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What are the challenges?



Old Systems

✤ Hospitals, Labs, Clinical trials, 
Medicare

✤ Often unstructured & semi-
structured data

✤ Lots of data for points in time

✤ Too many standards => no standard  

✤ Health Tracking (Fitbit, Jawbone, 
Apple Watch, WellnessFX)

✤ Structured, but everyone have their 
own structure

✤ Continuous streams of data

✤ No standards 

New Systems



Health IT Standards for Legacy Systems

✤ Terminology standards

✤ Code sets (LOINC, CVX)

✤ Classification Systems (ICD-10)

✤ Nomenclature (SNOMED, Omaha System) 

✤ Information exchange standards

✤ HL7 (CDA, V2, V3, FHIR)



Legacy Data

✤ Clinical Data

✤ Medical Records

✤ Vitals recorded by a nurse

✤ At best XML over TCP/HTTPS

✤ Deep data for specific points in time

✤ Personal Health Tracking

✤ Fitness

✤ Vitals recorded by a user’s device

✤ JSON over RESTful APIs

✤ Continuous streams of data

Modern Data



The good parts

✤ Both old and new systems provide a lot of valuable data

✤ Very useful once computers can make sense of it all

✤ The new data is filling the gaps of the data being collected in legacy systems

✤ Both of them together will create a more complete health profile of a person



We are building a system that enables deep learning

from these disparate data sources



How do we build it?



System Overview

✤ Many incoming data sources (push and pull)

✤ Many different data types (standards/models)

✤ Process data in near real-time (from the time data enters our system)

✤ Flexibility and speed of development are essential  
 
 



Our infrastructure

✤ We build micro-services

✤ Containerize them using Docker

✤ Deploy them using Mesos/Marathon

✤ Push the data through a Kafka pipeline

✤ And use Spark to work with the data



The foundation for the data infrastructure is Mesos and Marathon
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The foundation for the data pipeline is Kafka
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Kafka

Data ingestion

Data organization Data normalization

Structured data API
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xml,html,pdf,text JSON
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Data normalization tasks

✤ Using classifiers to normalize test results (i.e. blood tests)

✤ Predicting the class - identifying correct name

✤ Standardizing on units

✤ Normalizing values

✤ We accomplish this by using Apache Spark



Why Spark?

✤ Complete toolset to work with large distributed data sets

✤ Great stack for doing stream processing

✤ Built in tools for  Machine Learning (MLlib)

✤ Easy deployment to Mesos or Standalone

✤ It is FAST (Lazy loading of data into RDDs)

✤ Native Scala/Python interaction and includes a shell (developer friendly)



Spark Basics

✤ Spark Driver

✤ Define and launch RDDs and has the reference 
to the SparkContext

✤ Spark Workers

✤ Read/Write data to/from RDDs/HDFS

✤ Transforms RDD partitions (filter(), map(), 
union() etc.)

✤ Actions

✤ collect(), broadcast(), count(), reduce(), take(n)

Worker
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Scheduler
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Spark MLlib

✤ It’s a framework not a library

✤ Contains all components you need to do ML at scale.

✤ Leveraging RDDs to scale across multiple workers

✤ Includes common algorithms for that are optimized for parallelized 
environments.



Classification and Regression

✤ Libraries for 

✤ binary classification,

✤ multi-class classification

✤ and regression analysis.

✤ We’ll look at an example using LogisticRegressionWithLBFGS  
to classify clinical test results  
 



Code example (MLlib /Classification)



Spark Streaming

✤ Once you have trained a model you can plug it into a streaming Context 
and get real time predictions / decisions.

✤ Spark Streaming extends the core API

✤ Ingest data from 0MQ, Kafka, TCP etc.

✤ Publish data to dashboards or store in the database etc.
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Whats next…

✤ This architecture and the tools have given us a lot of flexibility

✤ Stable platform for the future scale

✤ Still early stages building out this platform

✤ Data engineers have ability to explore  



Thank you!

Contact info:
ola@humanapi.co
@OlaWiberg

http://humanapi.co
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