
Ola Wiberg, April 24, 2015

Unlocking Our Health Data
Transforming Unstructured Data at Scale

Photo Credit: Sergio Bertolini

https://www.flickr.com/photos/hadock/


Human API

✤ Launched Summer 2013 

✤ Based in Redwood City, CA

✤ Building a unified health data platform

✤ Enable next generation health applications

✤ Easy integration of health data from “anywhere”



What problems are we solving?



The Old and the New

✤ Health data lives in silos (both old and new)

✤ Old “legacy systems” have a number of 
technical challenges for data access.

✤ New systems are technically easier with 
modern APIs and JSON data.

✤ No universal standards

✤ We are enabling developers to work with data 
from any type of system using one API. 

(Photo credit: Pablo Fernández)

https://www.flickr.com/photos/hadock/


What are the challenges?



Old Systems

✤ Hospitals, Labs, Clinical trials, 
Medicare

✤ Often unstructured & semi-
structured data

✤ Lots of data for points in time

✤ Too many standards => no standard  

✤ Health Tracking (Fitbit, Jawbone, 
Apple Watch, WellnessFX)

✤ Structured, but everyone have their 
own structure

✤ Continuous streams of data

✤ No standards 

New Systems



Health IT Standards for Legacy Systems

✤ Terminology standards

✤ Code sets (LOINC, CVX)

✤ Classification Systems (ICD-10)

✤ Nomenclature (SNOMED, Omaha System) 

✤ Information exchange standards

✤ HL7 (CDA, V2, V3, FHIR)



Legacy Data

✤ Clinical Data

✤ Medical Records

✤ Vitals recorded by a nurse

✤ At best XML over TCP/HTTPS

✤ Deep data for specific points in time

✤ Personal Health Tracking

✤ Fitness

✤ Vitals recorded by a user’s device

✤ JSON over RESTful APIs

✤ Continuous streams of data

Modern Data



The good parts

✤ Both old and new systems provide a lot of valuable data

✤ Very useful once computers can make sense of it all

✤ The new data is filling the gaps of the data being collected in legacy systems

✤ Both of them together will create a more complete health profile of a person



We are building a system that enables deep learning

from these disparate data sources



How do we build it?



System Overview

✤ Many incoming data sources (push and pull)

✤ Many different data types (standards/models)

✤ Process data in near real-time (from the time data enters our system)

✤ Flexibility and speed of development are essential  
 
 



Our infrastructure

✤ We build micro-services

✤ Containerize them using Docker

✤ Deploy them using Mesos/Marathon

✤ Push the data through a Kafka pipeline

✤ And use Spark to work with the data



The foundation for the data infrastructure is Mesos and Marathon



Mesos Slave

Mesos Slave

Mesos Slave

Mesos 
MastersZookeeper Marathon

Mesos Slave

Mesos Slave

Mesos Slave

Mesos Slave

Mesos Slave

Mesos Slave

Service A Service A

Service A



Mesos Slave

Mesos Slave

Mesos Slave

Mesos 
MastersZookeeper Marathon

Mesos Slave

Mesos Slave

Mesos Slave

Mesos Slave

Mesos Slave

Mesos Slave

Service A Service A

Service AService A



Mesos Slave

Mesos Slave

Mesos Slave

Mesos 
MastersZookeeper Marathon

Mesos Slave

Mesos Slave

Mesos Slave

Mesos Slave

Mesos Slave

Mesos Slave

Service A Service A

Service AService A



Mesos Slave

Mesos Slave

Mesos Slave

Mesos 
MastersZookeeper Marathon

Mesos Slave

Mesos Slave

Mesos Slave

Mesos Slave

Mesos Slave

Mesos Slave

Service A Service A

Service AService A



The foundation for the data pipeline is Kafka



ZM
Q

Producer 

K

K K

P

Z

P

Z

P

K

P

K

ZM
Q App

ZM
Q App

ZM
Q App

ZM
Q

Consumer

Replay

Replayer C
Replayer C

Replayer C

Z

P

K

P

K

ZM
Q App

ZM
Q App

Kafka Cluster



Kafka

Data ingestion

Data organization Data normalization

Structured data API
Data Cleanup

Data Extractions

xml,html,pdf,text JSON



Kafka

Data ingestion

Data organization Data normalization

Structured Data API
Data Cleanup

Data Extractions



Data normalization tasks

✤ Using classifiers to normalize test results (i.e. blood tests)

✤ Predicting the class - identifying correct name

✤ Standardizing on units

✤ Normalizing values

✤ We accomplish this by using Apache Spark



Why Spark?

✤ Complete toolset to work with large distributed data sets

✤ Great stack for doing stream processing

✤ Built in tools for  Machine Learning (MLlib)

✤ Easy deployment to Mesos or Standalone

✤ It is FAST (Lazy loading of data into RDDs)

✤ Native Scala/Python interaction and includes a shell (developer friendly)



Spark Basics

✤ Spark Driver

✤ Define and launch RDDs and has the reference 
to the SparkContext

✤ Spark Workers

✤ Read/Write data to/from RDDs/HDFS

✤ Transforms RDD partitions (filter(), map(), 
union() etc.)

✤ Actions

✤ collect(), broadcast(), count(), reduce(), take(n)

Worker
Data/RAM

Worker
Data/RAM

Driver
Context

Scheduler

Lineage Graph



Spark MLlib

✤ It’s a framework not a library

✤ Contains all components you need to do ML at scale.

✤ Leveraging RDDs to scale across multiple workers

✤ Includes common algorithms for that are optimized for parallelized 
environments.



Classification and Regression

✤ Libraries for 

✤ binary classification,

✤ multi-class classification

✤ and regression analysis.

✤ We’ll look at an example using LogisticRegressionWithLBFGS  
to classify clinical test results  
 



Code example (MLlib /Classification)



Spark Streaming

✤ Once you have trained a model you can plug it into a streaming Context 
and get real time predictions / decisions.

✤ Spark Streaming extends the core API

✤ Ingest data from 0MQ, Kafka, TCP etc.

✤ Publish data to dashboards or store in the database etc.





Ingested 
Data 

Streaming  
Data

Streaming  
Normalized 

Data

Read
Data

Spark SQL
(ETL)

Feature 
Extraction

Train 
Classifier

Save
Model



Ingested 
Data 

Streaming  
Data

Streaming  
Normalized 

Data

Read
Data

Spark SQL
(ETL)

Feature 
Extraction

Train 
Classifier

Save
Model

Kafka Spark



Whats next…

✤ This architecture and the tools have given us a lot of flexibility

✤ Stable platform for the future scale

✤ Still early stages building out this platform

✤ Data engineers have ability to explore  



Thank you!

Contact info:
ola@humanapi.co
@OlaWiberg

http://humanapi.co

mailto:ola@humanapi.co
http://humanapi.co

